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4 Perception

One of the most important tasks of an autonomous system of any kind is to acquire knowl-
edge about its environment. This is done by taking measurements using various sensors and
then extracting meaningful information from those measurements. 

In this chapter we present the most common sensors used in mobile robots and then dis-
cuss strategies for extracting information from the sensors. For more detailed information
about many of the sensors used on mobile robots, refer to the comprehensive book Sensors
for Mobile Robots by H.R. Everett [15].

4.1 Sensors for Mobile Robots

There are a wide variety of sensors used in mobile robots (figure 4.1). Some sensors are
used to measure simple values like the internal temperature of a robot’s electronics or the
rotational speed of the motors. Other, more sophisticated sensors can be used to acquire
information about the robot’s environment or even to directly measure a robot’s global
position. In this chapter we focus primarily on sensors used to extract information about the
robot’s environment. Because a mobile robot moves around, it will frequently encounter
unforeseen environmental characteristics, and therefore such sensing is particularly critical.
We begin with a functional classification of sensors. Then, after presenting basic tools for
describing a sensor’s performance, we proceed to describe selected sensors in detail.

4.1.1   Sensor classification
We classify sensors using two important functional axes: proprioceptive/exteroceptive and
passive/active.

Proprioceptive sensors measure values internal to the system (robot); for example,
motor speed, wheel load, robot arm joint angles, battery voltage.

Exteroceptive sensors acquire information from the robot’s environment; for example,
distance measurements, light intensity, sound amplitude. Hence exteroceptive sensor mea-
surements are interpreted by the robot in order to extract meaningful environmental fea-
tures.
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Passive sensors measure ambient environmental energy entering the sensor. Examples
of passive sensors include temperature probes, microphones, and CCD or CMOS cameras.

Active sensors emit energy into the environment, then measure the environmental reac-
tion. Because active sensors can manage more controlled interactions with the environ-
ment, they often achieve superior performance. However, active sensing introduces several
risks: the outbound energy may affect the very characteristics that the sensor is attempting
to measure. Furthermore, an active sensor may suffer from interference between its signal

Figure 4.1
Examples of robots with multi-sensor systems: (a) HelpMate from Transition Research Corporation;
(b) B21 from Real World Interface; (c) BIBA Robot, BlueBotics SA. 
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and those beyond its control. For example, signals emitted by other nearby robots, or sim-
ilar sensors on the same robot, may influence the resulting measurements. Examples of
active sensors include wheel quadrature encoders, ultrasonic sensors, and laser rangefind-
ers.

Table 4.1 provides a classification of the most useful sensors for mobile robot applica-
tions. The most interesting sensors are discussed in this chapter.

Table 4.1 
Classification of sensors used in mobile robotics applications

General classification
(typical use)

Sensor
Sensor System

PC or 
EC A or P

Tactile sensors
(detection of physical contact or 
closeness; security switches)

Contact switches, bumpers
Optical barriers
Noncontact proximity sensors

EC
EC
EC

P
A
A

Wheel/motor sensors
(wheel/motor speed and position)

Brush encoders
Potentiometers
Synchros, resolvers
Optical encoders
Magnetic encoders
Inductive encoders
Capacitive encoders

PC
PC
PC
PC
PC
PC
PC

P
P
A
A
A
A
A

Heading sensors
(orientation of the robot in relation to 
a fixed reference frame)

Compass
Gyroscopes
Inclinometers

EC
PC
EC

P
P
A/P

Ground-based beacons
(localization in a fixed reference 
frame)

GPS
Active optical or RF beacons
Active ultrasonic beacons
Reflective beacons

EC
EC
EC
EC

A
A
A
A

Active ranging
(reflectivity, time-of-flight, and geo-
metric triangulation)

Reflectivity sensors
Ultrasonic sensor
Laser rangefinder
Optical triangulation (1D)
Structured light (2D)

EC
EC
EC
EC
EC

A
A
A
A
A

Motion/speed sensors
(speed relative to fixed or moving 
objects)

Doppler radar
Doppler sound

EC
EC

A
A

Vision-based sensors
(visual ranging, whole-image analy-
sis, segmentation, object recognition)

CCD/CMOS camera(s)
Visual ranging packages
Object tracking packages

EC P

A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive. 
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The sensor classes in table 4.1 are arranged in ascending order of complexity and
descending order of technological maturity. Tactile sensors and proprioceptive sensors are
critical to virtually all mobile robots, and are well understood and easily implemented.
Commercial quadrature encoders, for example, may be purchased as part of a gear-motor
assembly used in a mobile robot. At the other extreme, visual interpretation by means of
one or more CCD/CMOS cameras provides a broad array of potential functionalities, from
obstacle avoidance and localization to human face recognition. However, commercially
available sensor units that provide visual functionalities are only now beginning to emerge
[90, 160].

4.1.2   Characterizing sensor performance
The sensors we describe in this chapter vary greatly in their performance characteristics.
Some sensors provide extreme accuracy in well-controlled laboratory settings, but are
overcome with error when subjected to real-world environmental variations. Other sensors
provide narrow, high-precision data in a wide variety of settings. In order to quantify such
performance characteristics, first we formally define the sensor performance terminology
that will be valuable throughout the rest of this chapter.

4.1.2.1   Basic sensor response ratings
A number of sensor characteristics can be rated quantitatively in a laboratory setting. Such
performance ratings will necessarily be best-case scenarios when the sensor is placed on a
real-world robot, but are nevertheless useful.

Dynamic range is used to measure the spread between the lower and upper limits of
input values to the sensor while maintaining normal sensor operation. Formally, the
dynamic range is the ratio of the maximum input value to the minimum measurable input
value. Because this raw ratio can be unwieldy, it is usually measured in decibels, which are
computed as ten times the common logarithm of the dynamic range. However, there is
potential confusion in the calculation of decibels, which are meant to measure the ratio
between powers, such as watts or horsepower. Suppose your sensor measures motor current
and can register values from a minimum of 1 mA to 20 Amps. The dynamic range of this
current sensor is defined as

 (4.1)

Now suppose you have a voltage sensor that measures the voltage of your robot’s bat-
tery, measuring any value from 1 mV to 20 V. Voltage is not a unit of power, but the square
of voltage is proportional to power. Therefore, we use 20 instead of 10:

10
20

0.001
------------- 43 dB=log⋅
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 (4.2)

Range is also an important rating in mobile robot applications because often robot sen-
sors operate in environments where they are frequently exposed to input values beyond
their working range. In such cases, it is critical to understand how the sensor will respond.
For example, an optical rangefinder will have a minimum operating range and can thus pro-
vide spurious data when measurements are taken with the object closer than that minimum.

Resolution is the minimum difference between two values that can be detected by a sen-
sor. Usually, the lower limit of the dynamic range of a sensor is equal to its resolution.
However, in the case of digital sensors, this is not necessarily so. For example, suppose that
you have a sensor that measures voltage, performs an analog-to-digital (A/D) conversion,
and outputs the converted value as an 8-bit number linearly corresponding to between 0 and
5 V. If this sensor is truly linear, then it has  total output values, or a resolution of

.   
Linearity is an important measure governing the behavior of the sensor’s output signal

as the input signal varies. A linear response indicates that if two inputs x and y result in the
two outputs  and , then for any values  and , . This
means that a plot of the sensor’s input/output response is simply a straight line. 

Bandwidth or frequency is used to measure the speed with which a sensor can provide a
stream of readings. Formally, the number of measurements per second is defined as the sen-
sor’s frequency in hertz. Because of the dynamics of moving through their environment,
mobile robots often are limited in maximum speed by the bandwidth of their obstacle detec-
tion sensors. Thus, increasing the bandwidth of ranging and vision-based sensors has been
a high-priority goal in the robotics community.

4.1.2.2   In situ sensor performance
The above sensor characteristics can be reasonably measured in a laboratory environment
with confident extrapolation to performance in real-world deployment. However, a number
of important measures cannot be reliably acquired without deep understanding of the com-
plex interaction between all environmental characteristics and the sensors in question. This
is most relevant to the most sophisticated sensors, including active ranging sensors and
visual interpretation sensors.

Sensitivity itself is a desirable trait. This is a measure of the degree to which an incre-
mental change in the target input signal changes the output signal. Formally, sensitivity is
the ratio of output change to input change. Unfortunately, however, the sensitivity of
exteroceptive sensors is often confounded by undesirable sensitivity and performance cou-
pling to other environmental parameters.

20
20

0.001
------------- 86 dB=log⋅

28 1–
5 V 255( ) 20 mV=

f x( ) f y( ) a b f ax by+( ) af x( ) bf y( )+=
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Cross-sensitivity is the technical term for sensitivity to environmental parameters that
are orthogonal to the target parameters for the sensor. For example, a flux-gate compass can
demonstrate high sensitivity to magnetic north and is therefore of use for mobile robot nav-
igation. However, the compass will also demonstrate high sensitivity to ferrous building
materials, so much so that its cross-sensitivity often makes the sensor useless in some
indoor environments. High cross-sensitivity of a sensor is generally undesirable, especially
when it cannot be modeled.

Error of a sensor is defined as the difference between the sensor’s output measurements
and the true values being measured, within some specific operating context. Given a true
value v and a measured value m, we can define error as . 

Accuracy is defined as the degree of conformity between the sensor’s measurement and
the true value, and is often expressed as a proportion of the true value (e.g., 97.5% accu-
racy). Thus small error corresponds to high accuracy and vice versa:

 (4.3)

Of course, obtaining the ground truth, , can be difficult or impossible, and so establish-
ing a confident characterization of sensor accuracy can be problematic. Further, it is impor-
tant to distinguish between two different sources of error:

Systematic errors are caused by factors or processes that can in theory be modeled.
These errors are, therefore, deterministic (i.e., predictable). Poor calibration of a laser
rangefinder, an unmodeled slope of a hallway floor, and a bent stereo camera head due to
an earlier collision are all possible causes of systematic sensor errors.

Random errors cannot be predicted using a sophisticated model nor can they be miti-
gated by more precise sensor machinery. These errors can only be described in probabilistic
terms (i.e., stochastically). Hue instability in a color camera, spurious rangefinding errors,
and black level noise in a camera are all examples of random errors.

Precision is often confused with accuracy, and now we have the tools to clearly distin-
guish these two terms. Intuitively, high precision relates to reproducibility of the sensor
results. For example, one sensor taking multiple readings of the same environmental state
has high precision if it produces the same output. In another example, multiple copies of
this sensor taking readings of the same environmental state have high precision if their out-
puts agree. Precision does not, however, have any bearing on the accuracy of the sensor’s
output with respect to the true value being measured. Suppose that the random error of a
sensor is characterized by some mean value  and a standard deviation . The formal def-
inition of precision is the ratio of the sensor’s output range to the standard deviation:

error m v–=

accuracy 1
error

v
-----------------–=⎝ ⎠

⎛ ⎞

v

μ σ
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 (4.4)

Note that only  and not  has impact on precision. In contrast, mean error  is
directly proportional to overall sensor error and inversely proportional to sensor accuracy.

4.1.2.3   Characterizing error: the challenges in mobile robotics
Mobile robots depend heavily on exteroceptive sensors. Many of these sensors concentrate
on a central task for the robot: acquiring information on objects in the robot’s immediate
vicinity so that it may interpret the state of its surroundings. Of course, these “objects” sur-
rounding the robot are all detected from the viewpoint of its local reference frame. Since
the systems we study are mobile, their ever-changing position and their motion have a sig-
nificant impact on overall sensor behavior. In this section, empowered with the terminol-
ogy of the earlier discussions, we describe how dramatically the sensor error of a mobile
robot disagrees with the ideal picture drawn in the previous section.

Blurring of systematic and random errors. Active ranging sensors tend to have failure
modes that are triggered largely by specific relative positions of the sensor and environment
targets. For example, a sonar sensor will produce specular reflections, producing grossly
inaccurate measurements of range, at specific angles to a smooth sheetrock wall. During
motion of the robot, such relative angles occur at stochastic intervals. This is especially true
in a mobile robot outfitted with a ring of multiple sonars. The chances of one sonar entering
this error mode during robot motion is high. From the perspective of the moving robot, the
sonar measurement error is a random error in this case. Yet, if the robot were to stop,
becoming motionless, then a very different error modality is possible. If the robot’s static
position causes a particular sonar to fail in this manner, the sonar will fail consistently and
will tend to return precisely the same (and incorrect!) reading time after time. Once the
robot is motionless, the error appears to be systematic and of high precision.

The fundamental mechanism at work here is the cross-sensitivity of mobile robot sen-
sors to robot pose and robot-environment dynamics. The models for such cross-sensitivity
are not, in an underlying sense, truly random. However, these physical interrelationships
are rarely modeled and therefore, from the point of view of an incomplete model, the errors
appear random during motion and systematic when the robot is at rest.

Sonar is not the only sensor subject to this blurring of systematic and random error
modality. Visual interpretation through the use of a CCD camera is also highly susceptible
to robot motion and position because of camera dependence on lighting changes, lighting
specularity (e.g., glare), and reflections. The important point is to realize that, while sys-
tematic error and random error are well-defined in a controlled setting, the mobile robot can
exhibit error characteristics that bridge the gap between deterministic and stochastic error
mechanisms.

precision
range

σ
---------------=

σ μ μ
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Multimodal error distributions. It is common to characterize the behavior of a sensor’s
random error in terms of a probability distribution over various output values. In general,
one knows very little about the causes of random error and therefore several simplifying
assumptions are commonly used. For example, we can assume that the error is zero-mean,
in that it symmetrically generates both positive and negative measurement error. We can
go even further and assume that the probability density curve is Gaussian. Although we dis-
cuss the mathematics of this in detail in section 4.2, it is important for now to recognize the
fact that one frequently assumes symmetry as well as unimodal distribution. This means
that measuring the correct value is most probable, and any measurement that is further
away from the correct value is less likely than any measurement that is closer to the correct
value. These are strong assumptions that enable powerful mathematical principles to be
applied to mobile robot problems, but it is important to realize how wrong these assump-
tions usually are.

Consider, for example, the sonar sensor once again. When ranging an object that reflects
the sound signal well, the sonar will exhibit high accuracy, and will induce random error
based on noise, for example, in the timing circuitry. This portion of its sensor behavior will
exhibit error characteristics that are fairly symmetric and unimodal. However, when the
sonar sensor is moving through an environment and is sometimes faced with materials that
cause coherent reflection rather than returning the sound signal to the sonar sensor, then the
sonar will grossly overestimate the distance to the object. In such cases, the error will be
biased toward positive measurement error and will be far from the correct value. The error
is not strictly systematic, and so we are left modeling it as a probability distribution of
random error. So the sonar sensor has two separate types of operational modes, one in
which the signal does return and some random error is possible, and the second in which
the signal returns after a multipath reflection, and gross overestimation error occurs. The
probability distribution could easily be at least bimodal in this case, and since overestima-
tion is more common than underestimation it will also be asymmetric.

As a second example, consider ranging via stereo vision. Once again, we can identify
two modes of operation. If the stereo vision system correctly correlates two images, then
the resulting random error will be caused by camera noise and will limit the measurement
accuracy. But the stereo vision system can also correlate two images incorrectly, matching
two fence posts, for example, that are not the same post in the real world. In such a case
stereo vision will exhibit gross measurement error, and one can easily imagine such behav-
ior violating both the unimodal and the symmetric assumptions.

The thesis of this section is that sensors in a mobile robot may be subject to multiple
modes of operation and, when the sensor error is characterized, unimodality and symmetry
may be grossly violated. Nonetheless, as we shall see, many successful mobile robot sys-
tems make use of these simplifying assumptions and the resulting mathematical techniques
with great empirical success.


